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APPROXIMATION SCHEMES FOR

NONLINEAR NEUTRAL OPTIMAL CONTROL SYSTEMS

by

Karl Kunisch

---— - Abstract: Tt ot s

We discuss methods of approximating stable neutral functional
differential equations and associated optimal control problems
by sequences of optimal control problems for ordinary differen-

tial equations. By introducing a class of "mollified" neutral

functional differential equations, convergence of the linear
interpolating spline and the averaging approximation scheme is

proved. A number of numerical examples is included.
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1. Introduction and Notation.

In recent years a significant amount of research was

directed towards developing approximation schemes for delay dif-
ferential equations. Although quite a few attempts have been

made before, a paper by Banks and Burns [2] is probably the first
one that contains convergence proofs (in a functional analysis -
setting) for a specific scheme - called averaging approximations
' - as well as numerical results. Various different schemes, most
important spline approximation schemes, have been discussed in
the meantime and we refer to [1,2,3,20]. For neutral functional
differential equations (NFDE) the author's papers [15] and [7]
are probably one of the first contributions to this field. Sub-
sequently in { 9] and [11]spline schemes and the averaging
approximation scheme have been discussed in different state
spaces. For a treatment of a certain class of NFDE's that can
be transformed to functional differential equations (FDE) we
mention [18].

In this paper we address the question of numerical approxi-

mation methods for optimal control problems associated with non-

linear NFDE and we restrict our attention to the averaging or, what

is almost equivalent, to jinterpolating linear spline schemes, Al-
though one might suspect that these schemes converge less quickly
than higher order schemes, the extreme simplicity of their

algebraic structure and the resulting simplicity in computer




programming is a persuasive reason for their investigation.
Due to lack of high-order smoothness (averaging approximation subspaces

2

e consist, roughly speaking, of L® functions and linear inter-

o - - k3
polating splines are Wl’ functions), however, it requires much
more tedious analysis to verify convergence of these latter
schemes than for schemes whose approximating subspaces consist

of functions of higher order smoothness [4].

" The convergence result that is discussed in this paper
generalizes the one in [15] in that it is uniform in the control
function that enters into the right hand side of the equation
and it extends [9,11] in that these latter papers treat only
linear NFDE. The presentation is organized in the following way.

Section 2 contains the existence-uniqueness theory that will be

relevant for the rest of the paper and introduces the '"mollified
NFDE". In Section 3 we first discuss an approximation result
| for nonlinear FDE which generalizes those existing in the litera-
ture in that it allows nonlinear point delays and subsequently

we apply this result to the mollified NFDE to prove the above-

| ' mentioned convergence result for NFDE. Section 4 finally con-
‘ tains a discussion of a class of optimal control problems and
examples.

Throughout the paper we shall employ the following notation.
The n-dimensional Euclidean space is denoted by R™ and it is

endowed with the Euclidean norm unless specified otherwise. The
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set of all nonnegative real numbers is R*. For -w<a<bcw
the space of all continuous functions x:[a,b] +R" is denoted

by C(a,b;R"™) and is endowed with the suprenum norm ||x|| [a,b]"
’

We let LP(a,b;R"), 1 < p < », stand for the Banach space of ]
.a11 equivalence classcs of functions x:(a,b) +1R" such that
|x|P is integrable and denbte the usual norm by l'lp,[a,b]'
There will arise no need to distinguish between representatives
" and equivalence classés of functions in LP(a,b;R™). The linear
space of locally integrable, essentially bounded functions
is denoted by L®'1°C(a «R") and wl*“(a,b;R") stands for the
Sobolov space of absolutely continuous functions with derivative
in Lw(a,b;Rn). For C(-r,OﬂRn), r >0, we simply write C
with norm |-|; analogously LP = tP(-r,0;R") and
wls® = wls®(.r,0;R™). We shall also need the space of continuous
functions x:[a,b] » C abbreviated by C(a,b;C) and endowed
with suprenum norm |||} [a,b]" The restriction of a function

¢ to a subset J of its domain is denoted by ¢|J. We let

o i yiusinatl

A nm stand for the vector space of all real n x m matrices and
14

A* will be the transpose of A € é; Finally, as usual in the

y|°
theory of delay equations, for r > 0, a > Oand x:[-r,0] +R" the
function Xy is defined by xt(S) = x(t+s) for s € [-r,0]. Some familiarity

with the basic concepts of spline analysis is assumed; as a reference

we cite [19]. The reader, who is unfamiliar with delay equations,

is referred to [8].




2. Existence Theory and the Mollified Equation.

We consider the nonlinear neutral functional differential

equation (NFDE)

JEP(x) = £(t,x,u(t),  for t >t } -
Xg, T 4 €C
where
L
D(w) = v(0) - I By w(-ry), for yec (2.2)
1l=

with 0 <r;... <1 =71, B, €& and Dom(f) = [tg,=) x C xR".

L ,n
A function x(-;¢,u) or x(-;¢) or simply x will be called a

solution of (2.1) on [to-r,T], T>t,, if x, =¢ and
0

t
f(S,xS,u(s))ds (2.3)
t

% %
X(8) = 600) -} BioCry) + § Byx(tory) I .

holds for t € [to,T]. The following conditions on f will be

used:

(H1) For all a > t;, x € C(t,-r,a;R") and u € 1P (ty,aR™),
the mapping s ~» f(s,xs,u(s)) from [to,a) >R" s

integrable;

e




(H2) for all g > 0 there exists a nondecreasing function
nf € 171 (¢ ,=R*) such that
1£(t,0,u) - £(t,p,u)| < nBe) @+ fulP/2) oy

for all t € [t,,=),¢ and ¢ € C with |[¢]| < 8,
lv] <8 and u eR™;

(H3) there exists a nondecreasing function n, € L”’loc(to,uﬂa+)

such that
[£¢t,8,u)| < ny(0) (a+[ulP/)(|g]41),
for all t € [to,w), ¢ €C and u eRR",

Remark 2.1. By a simple calculation one can verify that (H3)
will be satisfied , e.g., if (H2) holds and if
(e¢) there exists a @ € C and n; € L”'loc(xo,wgk+)

such that |£(t,p,u)| < n3(t)(1+|u|p/2). and

(B) there exists 52 € L"’loc(to,wjk*) such that
|£¢t,0,u)| < A () (1+[ulP/2)(Jo[+1) for all
t € [to,w), u € R™ and all |¢| sufficiently large.

Remark 2.,2. Conditions (H1) - (H3) are comparable to conditions

(Hi) - (Hiii) in [1]. The conditions in [1] include initial data




in LZ(-r,OﬂRn), and linear discrete delays but restrict the
class of nonlinear functions f to those arising from distributed
delays. The conditions used in this paper include nonlinear dis-

crete delay terms.

Remark 2.3. The most frequently cited class of examples for NFDE
is the one arising from certain hyperbolic partial differential
‘equations modelling lossless transmission lines [6,10]. In this’
case f = f1 + fz, where f1 is linear and f2 is of the form
f2(¢) = f2(¢(0)+¢(-r)) describing the characteristic curve of a
diode. So there is a reasonably large class of examples to which

our theory applies.

Lemma 2.1. If (Hl1) - (H3) hold, if ¢ € C and if U is a bounded

set in Lp(tO,TﬂRm) for some T > tys then

(L1) there exists a unique solution x(.;¢,u) € C(-r+t0,TﬂRn)

of (2.1) for each u € U and

(L2) the family of functions {x(-;¢,u)|u € U} is a bounded

set in C(to-r,T;R“).

We shall not give the proof of this lemma here, since it only
involves a standard Piccard-iteration.technique. (L2) follows

easily from (H3).

T VRN VIRV




We turn to the following "mollified" form of (2,1) and

define for ¢ > 0

g
L

x(t) = ¢(0) - % l-f B;#(s-1;)ds +
) i=1 & i=1

0
(2.4)

Solutions x®(-;¢,u) or x%(-;¢) or simply x® of (2.4) on
[to-r,T) are functions satisfying (2.4) with x: = ¢.
0
Lemma 2.2. Let T > ty,¢ € C, let U be a bounded set in
LP(t,,T+1;R™) and assume that (L1), (H1) and (H2) hold. Then

(a) there exists a unique solution x%(-;¢,u) of (2.4)
on [to-r,Tel, with T® > T for all sufficiently
small e and all u € U.

(b) If, moreover, (L2) holds, then

lim xe(t;¢,u) = x(t;¢o,u)

€40
uniformly in t € [tO,T] and u € U,

Proof. Parts (a) and (b) will be proved simultaneously. Let
x(+;¢,u) = x(+) be the solution of (2.1) on [to-r,T] for some
u€U, let e)<r, and Y = sggllx(.;¢,u)u [ty-T,T]" For

u
a € [to,t0+min(r1-eo,T-t0)] we define

= {z]z € C(ty,a;RM), |zl [tg,a] < ¥ + 1}

l.[ B. x(s-r.+t)ds + It f(s,x_,u(s))ds
€ i t R .
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and for e€(0,so) and t ¢ [to,a] we let

V2 (1) = 6(0) + T

1

e~

€ . » t -
Bty - stsoras + [tofcs,zs,u(s))ds,

¢(s) for s € [-r,0]
where o(s) = {
$(0) for s € [0,x)

z(s) for s € [ty,a)
and z(s) = {

¢(s-t0) for s € [t0~r,t0]

Obviously V®(4%) < C(ty,aiR"). We shall verify VE(8%) cg”

and that V® is a contraction for some o > t,. For z,w € #*

and t € [to,a] it follows from (H2) that
t -~ ~
| (VEz) (t) - (VEw)(t)| < It [£(s,zg,u(s)) - f(s,wg,u(s))|ds <
0

2 t
<lz=wll g ey 21D [t0(1+|u(s)|p/2)ds <

< ”z-wl|[t0,t] nI+1(T)(t-tO)l/Z[(T-tO)l/z + lulp{%to,T]]’

(2.5)

where the right hand side of (2.5) is independent of ¢, for 0 < ¢ < €




We let x be a solution of (2.1) and use (H2) once again to

find

[(VE2) ()] < |x()] + | (VEz) (8)-x(t)] <

~ 2’ -~
<y * Z % J B. (¢(s+t~t0-ri) - ¢(t-t0-ri))ds| +

. t - .
+ | 2 [ B (6(s-1;)-0(-r;))ds| + jt |€(s,7,(s)) - £(s,x,,u(s)) |ds <
0

A 2’ > A
ST+2) lsgllogte) + 20" (0 (1) () Y200 ) 12 +tu|§{[t ol @2.8)

where Po denotes the modulus of continuity of x{(-) on [-r+t0,T]. Estimates
(2.5) and (2.6) imply the existence of solutions x€(~;¢,u) on
[to-r,al] for some Aul > to and all u € U. By (H2) and an

estimate using the Gronwall lemma, it also follows that
lim x®(t;¢,u) = x(t;¢,u) (2.7)
e¥Q

uniformly on [to,ul] and uniformly in u € U. Using the uniformities in t
and u in inequalities (2.5) and (2.6) we may now proceed stepwise with step-
size o -ty in each step decreasing the range of €, if necessary, to

bound the underlined term in the estimate of V&2 by an additional
use of the triangle inequality and the fact that (2.7) holds on

all previous intervals., This concludes the proof. G




10.

The last lemma of this section will be of importance for the

approximation of optimal control problems associated with (2.1). %

We shall need an additional hypothesis: %

(H4) Conditions (H1)-(H3) hold with p = 2 and
f(t,é,u) =.f1(t,¢) + fz(t,¢)u; moreover for all
@ >t, and x € C(to-r,aﬂR"), the map

s . 2
-— -t £,(tx) isdn- L (tg,05 o)-

As usual-> will denote weak convergence.

Lemma 2.3. If (HI)- (H4) hold and wu_~u in Li(ty,TR™

for T > t then

0’

lim x(t;¢,uk) = x(t; é,u)
k-0

E
L uniformly in t € [tO,T].
]
Proof. From (H3) it follows that there exists § > 0, such

that Ixt(-;¢,u)|§.§ and  |x, (-5 ¢up) | <B for all t € [ty,T]
and k = 1,2,... . By (H2) and (H4) we get for tE€ [to,min(T,t0+r1)]

t
Ix(t;0,u%) - x(t;o,0)] < IL (£0s % (6,05 ,u¥ ())-£(5,%_ (9,0) ,uK(s)))ds | +
0

t
[ @ oK) - £ox 00 eS| <

i o




t ky .k k t k
< ]t [£Cs,x, (6,05),u(8)) -~ £5,%_(0,u),u¥(s)) |ds + |L £, (s,%, (6,0) (u¥(s)-u(s))ds| <
0 0
B 172, % 1 Keeq1Zacy1/2q (8 Ky 124.01/2 , =
< nSm a2 11ROV IxCiow-xg o179 + 50,
to tO

where 1im p(k) = 0. The last inequality implies
koo

Cxg (30,0 - x o) <

~ t ~
< nBm-tl/? + luklz,[to,wﬂ(.ftolxs(-;¢,u)-xs(-;¢,u“3lzds)l/z»fpaq,

so that by an application of a generalized Gronwall lemma and since
{u¥|k=1,2...} is a bounded subset of Lz(to,T;]Rm) , the result holds

on [to,mi,n(T,t0+rl)]. Again in a finite number of steps we reach T.
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3. An Approximation Result that is uniform in the Control Variable.

In this section we shall prove convergence of an approxima-
tion scheme for (2.1) which is uniform in u, as u varies over
a bounded set U in Lp(tO,TﬂRm). This result will then be
used in Section 4 to numerically solve optimal control problems
associated with (2.1). The idea is to approximate (2.1) by the

sequence of mollified equations (2.4), and then to use techniques

that have been.developed for the approximation of FDE. Of course,

"passing to the limit, as the FDE converges to the NFDE is the

major difficulty that has to be overcome.

We start by considering the FDE

X(t)

f(t,xt,u(t)), for t > ty
(3.1)

¢, with ¢ € C.

X
]

In many instances the reformulation of (3.1) as a Cauchy problem
in a function space over the delay interval has proven to be help-
ful [1,12 et al]. For the space C this has been studied in great
detail in [13] and others. It is the variation of constants
formula of this abstract Cauchy problem which will be of impor-
tance for our purposes. Let PC = PC(-r,OﬂRn) denote the space
of piecewise continuous functions {[-r,0] +R" endowed with the

sup-norm and define S(t): PC + PC by




13.

¢ (0) for s

|v
1
-t

(S(t)d)(s) = {

¢(t+s) for -r < s < -t

and Q0 : [-r,O] + PC(-r,O;j{h’n) by

2. (s ( I for s =20
ols) = |

( 0 for -r <s <0,

"7 Consider next the integral equation in C given by

- t .
X, = S(t-t0)¢ + [t S(t-s)Qof(s,xS,u(s))ds, for t >t (3.2)
0

where the integral has to be interpreted pointwise as an integral '

in R®, i.e.: ' |

(fzosct-s)qbf(s,§s,u(s))d;)(r)'= fzo(S(t-s)Qo)(r)f(s,is,u(s))ds

for t€([-r,0]. It is known.[12, Proposition 2.1] that for initial data
in C and under a condition that is weaker than (Hl1), (3.1) and
(3.2) are equivalent in the sense that ;(t) is a solution of
(3.1) on [ty,T] if and only if x, satisfies (3.2). The

P | ' integral equation (3.2) and its analogue in the state-space

R" x L2(-r,0ﬂRn) have been used to develop various different

‘ schemes for FDE before [1,2,4] and Theorem 3.1 below is a

generalization of them for a specific class of schemes.
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Let {t?}, j=0,...,N be a partition of [-r,0] given

by t? = - Ej and define the corresponding sequence of linear
finite dimensional subspaces ZT of C by ZT = (¢ €C|l¢ is a
linear spline with knots at t?}.
' A basis for Z? is given by the columns of BN = (Bg»~--:32)’
E where B? is a matrix whose columns are in Z? and for which
% T T T Ry =yt (3.3)
i; holds; here Gij is the Kronecker symbol and I is the identity
' matrix. Of course, dim(Z?) = N+1 . Next we introduce some
additional notation. The families of operators {P?}- and '{A§}
from C into Z? and {Q¥} from [-r,0] 1into fzﬁ,n are defined by

Yoy e}) = oct}),  for 3 = 0,....N

N 0 for sE€ [-r,-t?]
Qp(s) = N N
(1+=s)I for s€ (-t,,0] ,
T 1
and
Ao = N,
with wN € Z? given by

NeeNy o NeareN 3 - oreN .
{!b (tj) r(¢(tj_1) ¢(tj)) for j = 1,...,N

oNoy = 0.

- ~




N
1
. N N ;N N . . ; . .
into Z;. We call {zl’Pl’Al} the linear interpolating spline

scheme [4]. Tomotivate the definition of AT we recall that

and Q? act as interpolation operators onto, respectively,

S(t):C =+ C 1is a linear Co-semigroup, whose infinitesimal generator,

A, is given by Dom(A) = (|9 € cl(-r,0®™),5(0) = 0} and

. A¢ = ¢ . Since A?, N=1,2,..., are %ounded linear operators,
[ ATt

they also generate linear semigroups e 1 that we denote by ST(t).
" The matrix réﬁféééniﬁiibnr'[A¥] of AT restricted to Z? is ’

given by

’ (3.4)

=z

o o0

1 -1 0
[AT] = \\ ®

0 1 o1

where ® denotes the Kronecker product.

Remark 3.1. The proofs to the theorems in this seﬁtion rely quite
(a1t

neavily on the simple structure of LAT] and e For higher
order splines, for example, the matrices analogous to A¥ become
wider and wider band matrices, whose matrix-exponentials seem

quite formidable.
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In the following lemma we state some of the properties of

N N N
Al,P1 and Sl'

Lemma 3.1.

(a) 1lim PT¢ =¢ for all ¢ € C,
N

® |IPfll <1 for al1 N,

() 1lim Sg(t)¢ = S(t)9, wuniformly in t on compact
N 1@ = o\ )
subsets of [0,»),

f @ [IsY()fl <1 for al1 N,

(&) 1im (sY()Q)(s) = (S(t)Qy) (5), unifornly on
N

ocompact subsets of [0,a] x (-r,0] ~ {(t,s)|t = -s}, for any a > O,

(£) liQf(s)ll <1 for all s € [-r,0] and all N.

The proof of Lemma 3.1. is contained in [13, pp.81].
(a),(b) and (f) are straightforward, (c) follows from the Trotter-
Kato theorem, (d) holds since the logarithmic norm of [AT] is

zero and (e) is proved by using the special structure of e

Theorem 3.1. Let (H1) - (H3) hold and assume that U is a

bounded subset of Lp(tO,TﬂRm) and T > ty- Then for all N

sufficiently large

t
| 2®) = ety + | sfe-)gfets () utses.
0
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has a unique solution EN = EN(-;¢,u) € ZT on [to,T] and

1im 2N(t30,u) = X (-36,u) in C (3.6)
N

“uniformly in u € U and t € [to,T].

Proof. The proof of this theorem is contained in [16] and will

- only be outlined- here: First, it was verified in {13, Lemma B.2} -

that the integral in (3.5) exists as a Bochner integral and that

t t
U Nce-)Qes,y(9) unas]| @ = [ Se-91d ey ,us)as.
t t

0 0
Since Srilzrilczril and Qrilzrilt':zliI it follows immediately that

the trajectory of any solution of (3.5) must lie in Z?.
By Lemma 2.1, (L2), the family {z(t,u)lt € [tO,T] and u € U}
is contained in a ball of radius Yy, 0 <y<eo , in C. For any :

a, tyg<a < T we define the set

B, = b €C(ty,a;0)} sup |y(t)] < v+ 1},
3 t€[t0,u]

‘: and a family of operators VN:C(to,a;C) -+ C(to,a;C) by

t
[ ‘ fVNY)(t) = s§(t-to)P§¢ + ftos¥(t-s)Q§f(s.y(s),u(s))ds. (3.7
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By (H2) and Lemma (3.1) (d) one can show that there exists a
constant Cl’ independent of N and u €U, such that for

all t € [to,a] and y,w € Q%

W - Wil <o s Iy - vl eVl 6.
te [to,a]

Moreover, there exists a function p with 1im p(N) = 0 and a
L L N .

constant C2, both independent of u € U and C2 not depending
on N, such that for all vy € 9% and t € [to,a]

t
IVNY(t)'Z(t)l < p(N)+C2(T+Al/2+(t-t0)1/z+<ft |Y(S)°Z(S)|2d5)1/2) <
‘ 0

<000 + Gyl 2z ety 2 (1)), (3.9)

To verify (3.9) one uses (3.2), (3.7), (H2), (H3) and Lemma 3.1.;

Lemma 3.1. (e) specifically implies that for each <t > 0 and

A >0 there exists an N, = Ny(t,)) such that I(S‘;I(t-s)QI;) (6) -
(S(t-s)Qo)(e)liT for all N>N;, t€ [tO,T], 6 € [-r,0] and s € [tgot] -
(t-A+6t+2+0),

Estimates (3.8) and (3.9) imply that there exist T > 0, X >0 and
®,ty< & < T, such that for all N sufficiently large

VNQalc: _Qal and VN is a contraction on gal, so that there
exist unique solutions EN of (3.5) on [to’all‘ For t € [to,al]
equality (3.6) follows from the first inequality of (3.9) with

Wy (t) = y(t) = 2Neey.
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We now notice that the constants in the estimates (3.8) and (3.9) are actually
uniform in t €[t0,T]. Therefore, one can proceed stepwise with
constant stepsize ay -ty each time repeating the above argument

until T is reached. This concludes the proof.'ﬂl

Remark 3.2. Theorem 3.1. remains true, if (H3) is replaced by

asspming Lem@a 2.1 ﬁLZ) apd

1£(t,0,)| < n,(0) (1+[ulP/?), for all te[ty,=) and u€R™

For the proof of Theorem 3.1 we only useﬁ properties of the

{Z¥,PT,A§}-scheme as given in Lemma 3.1., so that this theorem

would remain valid for any scheme that satisfies Lemma 3.1.

We now recall the NFDE (2.1)

%f Dxt = f(t,xt,u(t))‘ for t >t

X, = ¢

and assume

(H5) (i) Dé=6(0) - Bo(-r;) with 0 <ry <r
’ (ii) o(B) <1;

here p denotes the spectral radius of the matrix B €L .
]
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Remark 3.3. Condition (H5) is not as strong as it might appear

at first, and is directly connected with stable difference
operators as discussed in [8, chapter 12.5). If D 1is of the

specific form chosen in (H5) (i), then it is stable (stable in

.the delay rl) if and only if p(B) < 1. Note, that if p(B) <1,

then there always exists a norm |-| on R"™ and a subordinate

matrix-norm |||l , such that ||B|| < 1. Throughout the rest

" of this chapter it is assumed that IR"™ is endowed with this norm.

It should also be mentioned that those NFDE which arise when trans-
forming certain hyperbolic partial differential equations generally

satisfy p(B) <1, [6]5

Remark 3.4. Although the results are stated for the case

when D contains only one discrete delay, they are easily
generalized to several delays as in (2.2), as long as ihere exists
some norm on IRR"™ such that -Z' 1Bl <1 holds for the sub-
ordinate matrix norms. We reégil that in the scalar case
.§1|lBi” <1 1is necessary and sufficient for D to be stable,
}8, pp.291].

For D as in (HS) the mollified equation (2.4) is just the

variation of constants formula of

x(t) é Blx(t+e-r;) - x(t-ry)] + £(t,x,,u(t))

(3.10)

o]
"

¢ = 6,0 €C.
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By Lemma 2.2 (a) there exists an £q such that (3.10) has a

unique solution x: = x€(~;¢,u) for all e with 0 < g < gy < 1y.

Next for ¢ € (O,el] consider the sequence of equations

t
S)(t-5)Q)£(s,2""5(s) ,u(s))ds +

2Mo€(e) = sN(e-e,)PYe +[
0

t

t
+ [ slend Lo S v Em (s

'Y

(3.11)
L

where g(¢) = B¢(-r1), (or g(¢) = } Bi¢(-ri) in case of multiple
i=1

discrete delays in D). By Theorem 3.1 there exist solutions

zN’e(-;¢,u) of (3.11) for sufficiently large N and

lim 28 (t50,u) = xF(-50,u). (3.12)
N _
The above limit holds uniformly in t E[tO,T] and u € U, for each

fixed € € (0,51].

The sequence of approximating problems whose solutions

(hopefully) approximate the solution of (2.1) finally is given by

t
ST(t-s)QTf(s,zN(s),u(s))ds +
t

ACEENEN AR
0

. t :
. L sNee-s)@) ¥ BzNes) (t‘;‘N_l) ; zN(s](t?N))ds (3.13)
0

e =




J—

N N

‘ . N
This is the appropriate form of using the {Zl,Pl,Al} scheme

for approximating (2.1).

Theorem 3.2. Let T > to and let U be a bounded set in

Lp(tO,TﬂRm). Moreover, assume that (H1) - i3) and (H5) hold

~and that [|IB{l < 1 for an appropriate norm on IR". Then for

¢ € W®(-r,00R") solutions zN(t;¢,u) of (3.13) exist and
lim 2N(t;6,u) = x, (+39,u) (3.15)
N

uniformly in u € U and t € [tO,T].

Proof. First we need some additional notation. For x €]Rn(N+1),

with x = col(xn,...,xy) let Jix||® = 'sup |x;| and
0 N . i
i=0,...N
! .
(x|l = sup |x;|. Since the trajectories of (3.11) lie

i=1,...,N
entirely in z? it follows that zN’E(t;¢,u) = BNVN’E(t) uniquely

defines vV S(t;o,u) e RPNV gor to€ [ry,T).

The existence of solutions zN(t;¢,u) of (Z.14) is quite
simple to verify and we immediately turn to (3.15) and choose
n >0 arbitrarily. By Lemma 2.2(b) it follows that there exists

an e, <e1 such that

[xg(-50,0) - x, (+56,u)] < n (3.16)

~!
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. N N
This is the appropriate form of using the {Z?,Pl,Al} scheme

for approximating (2.1).

Theorem 3.2, Let T > tO and let U be a bounded set in

Lp(tO,TﬂRm). Moreover, assume that (H1) - (H3) and (HS) hold
and that [{(Bif < 1 for an appropriate norm on R". Then for
¢ € W]"w(-r,OﬂRn) solutions ZN(t;q),u) of (3.13) exist and

Lim 2N (t56,0) = x,(-36,u) (3.15)
N .

uniformly in u € U and t € [tO,T].

Proof. First we need some additional notation. For x E]R"(N+1),
with x = col(X,,...,xy) let {Ix{[ = sup |[x;| and
0 N i=0 i
oo
{ o :
i Hxlf ' = sup  [x;[. Since the trajectories of (3.11) lie
5 i=1,...,N

entirely in z? it follows that zN’e(t;¢,u) = BNVN’E(t) uniquely
defines vN’e(t;¢,u) €]Rn(N+1), for t € [tO,T].

14
4
L

The existence of solutions zN(t;¢,u)' of (C.14) is quite
simple to verify and we immediately turn to (3.15) and choose
n > C arbitrarily. By Lemma 2.2(b) it follows that there exists

an e, <egg such that

[x$(36,u) - x (+30,u)] < n
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for all ¢ < €y, u €U and t € [to,T]. We shall use the simple

estimate

- MEm < sup( WM E@ | - [+ W N E e | 7 -

+ ey ey ).
1 0
From the two technical Lemmas 3.2 and 3.3 at the end of this
section and the above estimate, it follows that there exist constants

N and

0 0 < €3 < €54 such that

83,

lzN’e(t;(b.U) - zN(t;¢,U)| <n (3.17)

for all € < €z, N2>Nj, u€dl and t € [tO,T]. Finally,
(3.12), (3.16) and (3.17) imply that for some N1 > N0
IzN(t;¢,u)-xt(-;¢,u)| < 3n for all N > Nl; uniformly in ¢t

and u. This ends the proof. @&

Remark 3.5. The special form of [A?] was used in the proof of

Lemma 3.1 (e) and will be used even more stringently in the

N

av Yrising

proofs of Lemmas 3.2 and 3.3 below. For subspaces Z

from averaging approximations [2] the operators approximating A

N
1

restricted to the finite dimensional subspaces. We briefly discuss

turn out to have the same matrix representation as A, when

[ ~




25,

the averaging approximation scheme. The state space is chosen
to be R" x LZ(-r,Oan), and will be abbreviated by Z when
endowed with its natural inner product and resulting norm.

ng are linear subspaces of Z defined by ng ={(n,¢)|n €1RY,
. N
o = ) ajx., aj €]Rn}, where x? is the characteristic function

j=1
of the interval [t?,t?_l). The orthogonal projections

N
N N . N N .
Pav:Z > Z,, are given by Pav(n,¢) = (n,jz1 wjx?) with
e — = .. _.N - .
t. -

S j-1
w? =¥q N ¢(s)ds for j =1,...,N. The operators corresponding
d t A
J

to Q) are defined by Q2 (n,$) = (n,0), independently’of N and
N, L adh = @) 1 @ -ahh
A T 5=y 371307

N N N AN }

N _ _ N
, and Aavz = Aavpavz for z € 2. {Zav’Pav’ av

N, .

Aav'z +~ Z are given by A
with a dgf 0
o
is called the averaging approximation scheme.

For linear equations with f of the form

~ Y 0
Enou®) = Agn ¢ T A Chy) ¢ [T AGIe()ds + Buce), (3.18)
i= -r

e o

R e A TN

where 0 = hy <h; <... <h =71, A €% E 6.2;’m, A(-)

n’
y
an L2 - n x n- matrix-valued function and u € Lp(tO,TﬂRm),
it was proved in [2] that

Lim Z3,(63n,6,0) = 2(ein,0,0) = (K(6),%e) in 2 (3.19)

; uniformly in t € [to,T] and in u, as u varies over a bounded

—
"




\ - Ceiae AX(t
subset of Lp(tO,TﬂRn). Here x satisfies -%%—l

~

. . -N .
(i(to),it ) = (n,$), with f as in (3.18), and 2,,(t) =
)

~ N ~ ~ N+1 .
= (wg(t), .21 w?(t)X?) where wN(t) E]R“( ) are the solutions

_of the ordinary differential equation

g Wiy = (N1 ¢ col (FEY, 81 ,u(e)),0, ..., 0)
N
- N N N
k o wN(tO) = col(n,¢§,..:,¢§) where P, . (n,¢) = (n’jzl ¢ij)-

Once (3.19) is established one can turn to

X() = BX(t-r;) + £(x(£),%,,u(t))
(3.20)
(x(tg),x, ) = (4(0),4),4 € C.
o)

Only a few changes have to be made in the proof of Theorem 3.2.
(we notice that the technical Lemmas 3.1 and 3.2 remain true,

. N N 1
since '(Pav(¢(0)’¢))i - (Pav(¢(0)’¢’))i+1| = O(N') for

i=0,...,N-1, and ¢ € Wl’”) before we arrive at:

‘ Proposition 3.1, 1If E is as in (3.18), if T to, ¢ € wl’“
‘ and if U is a bounded subset of Lp(tO,TﬂRm), then

= £(x(8),%,,u(t)),
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lém z:V(t) = (x(t),x) in Z (3.21)

uniformly in u € U and t € (ty>T1. Here x is a solution of

N
N < (wN N u N :
(3.20) and 2 () = (“av’o(t),izl wav,i(t)xi)’ where w_ is
the solution of

WN

J—

aVﬁN

N (3.22)
N
W(ty) = col(8(0),4),...,0) where PY (4(0),0) = (4(0) L o)

Comparing (3.14) with (3.22) we find that for many specific NFDE
the approximating ordinary differential equations arising from the
linear interpolating spline scheme and the averaging approximation

scheme differ only with respect to the initial value. The initial

values will be equal if ¢ is constant, for example. Proposition

3.1. can be extended along the lines of Theorems 3.1 and 3.2 to
include nonlinear equations, if conditions analagous to (H1)-(H3)
hold. Since the techniques are rather obvious but tedious, we
shall not include the details. This ends Remark 3.5.

We conclude this section with the two lemmas which are necessary
for the proof of Theorem 3.2 and recall that vN’e(t) and wN(t)
are the coordinate vectors of zN’e(t;¢,u) and zN(t;¢,u) with
N

respect to the basis B8 respectively.

—— e e
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Lemma 3.2. Under the hypotheses of Theorem 3.1 there exist
constants K., i=1,...,8 depending on ¢,f,B,T and U, but

not depending on N,e, t and ¢ such that

WM<k ama IBN@1° < Klol, + K + Klu@ P2, (3.23)

If, in addition, ¢ >0 and N satisfy Ig < 1—‘2J’—BJ-' then

e ™ < ¥ and WV < Kgld |+ Ky + Kgluce) [P/2 (3.24)

with [¢|_ = ess sup |o(t)].
t€(-r,0]

Proof. We start with a few useful technicalities and define
. N N i .
Z(s,i) = iT?-(f{t-s})l exp(-g(t-s)) for i =0,...,N-1 and t > s,
The following estimates can be found:

t
I Z(s,i)ds < 1 for i=20,...,N-1 (3.25)
t

0




> »
PR PR D S

t 2T
I 2%(s,i)ds «< for i=0,...,N-1. (3.26)
ty ~ 2r/n1

t

: {
(3.25)follows by a simple induction argument showing J Z(s,i)ds

k to
i N(t-to) N ) )
1 - kZO(IT) —5—— exp (—(t-t;)). Another induction argument
t .
. . 2 . N (2i)!
'1@21;€§ that _Itz ﬁ?fi)%éAi 7 _;TSZEZTTT , and (3.26) now
0 !

follows by Stirling's formula. From [12,15] we use the explicit

N
representation of e[Al(t)] given by

N
elAtl (3.27)

[exp(%E CN)-I](CN)'laN exp(%ﬁ CN)

where aN = ¢ol(I1,0,...,0) and

(-I_ 0 — 0"
I \\\\\\\\\\l
N _
C = 0\\ 0 .
{ 0 0 I -1

By employing the measure of the logarithmic norm of [A?] it is
R? (N+1)

proved in [12, Lemma 5.4] that for each x = (xo,...,xN) €

and with R" endowed with the Euclidean norm

1A




ATt .
e * 1x I < NI . (3.28)

holds; it is simple to check that endowing R" with any norm does

"not change that estimate.

To verify (3.24) we recall the definition of tNN and choose

kN = kN(e) such that ¢ - Ty € [tNN N’tNN N ); of course,
i -k j-k'-1

" it is still assumed that ¢ < e; < ry. The choice of KN implies

N N
-(k—%l-l—)-riei&ﬁl—)-r and |IE<N.-N

From (3.11), (3.28) and (3.29) it follows that

t
Il ™ < 17s] + Jt |£(s,2°%(s) ,u(s)) lds +
0

t
+ lj %-B col(I,(l-o(l,t-s))1,...,(1—o(N,t—s))I)(vNI:Ie N(S)-vNﬁe(S))dSI
to Tk j

Ne Jz1
where o(j,s) = exp("3)"] GpEHY for 2= 1,...,N. By (H3)
A=0 A°

the last estimate implies

t
Hﬁﬁu”:W%l*L wwnnﬁﬁ@m°+nuﬂugP”Ms+HMﬂuﬂ
0

where we yet have to find bounds on the coordinates of R(t).




e

t .
o)l =15 [ 3 e (s)as| <

to u=iN-xNa1

R SN A OT AR L TR I
< Bl asfpdlv™e )=+ ) VR el )

here we used (3.29).

Similarly for . =1,...,N one finds

t i-1 .
R (t)] < lgy Jt [1 -exp("Mt-s)) Z JE t-s) ] % I:’e(s)dsl -
0 us -J +1
= 1% %N [(°(i't‘to)-1JvN’E(t )]* Jt 2(s,i-1)v\"€(s)ds| <
- wk- 3N v ey " -
t
__llill_ﬁﬂ [Il Eleg) | T+ I 2(s,i-1) v E(s) || °°ds] <
t

t
< 1B Qg (WSl ™ + | 265,80 1290 ) "as)-
0
By hypothesis on ¢ and N, we have that 1 - ||B|| -E§-3_%(1-||BH ), and
Bl (Lﬁ%b <1, and therefore after summarizing the above estimates

one arrives at

- a0 t ' ®
NS ® < 2a- 1Bl 1[}p¥¢| + It nz(s)(l+|u(s)ip/z)ds + ||VN’e(t0)|| +
0 .
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t
+ max J (2(s,1-1) * my () A+ |u() P2 W05 () | "as] < ;
i=1,...,N tO

3 t
| < 20- D7 2lsl + [ my @) arlue) P es +
0

t
o max [ @Gy () Q) P W) “es);
i t

i=1l,...N 0

--— - an-application-of Gronwall's inequality now implies the result. For the
; estimate of ||[vI* €(t)|® one uses (3.11), (3.27) and (3.28), |

so that for t € [tO,T]

||;N’e(t)" ® §.||¥'C°1(0x(vg’€(t0) - V¥’e(t0))1,...,(Vg:i(t0) - Vg’efto))lu T+

~-N(t-s) -N(t-s)

t B Ll) §

+ IIL col(o,e r I,...,m}—n-! (N—(ilﬂ)N'le T I)
0

N, 1 y € ’ ®
g6, 2% (5) u()) + EB("';N_kN(S) : V’;Ne(s))]dsll +

P PR
SO, S AU ORI

+ (e, 2 um)] + |1 B(vf‘gka(t) - PREenl.
J - J

N .

Recall that P)o = Br;¢ (t’j‘) = N vWo5(t;).  Since by assumption ¢ € WHr",
j=0

the last estimate together with (H3), (3.25)and the previously determined

bound on zN’e(t) (or equivalently vN’e(t)) imply

. . t . '
||\}‘1’e(t) | © <’ess sup|o| + L n,(s) (1+|u(s)|P/2) (1+K5)ds + ny(t) (1+|u(t)|P/2) (Kg+1) +
A ‘ 0
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-N(t-s) _1 -N(t-s)
e il (e * 1 NV ToE 1 VN
col (0 Lol ort) e 1) N(s) (s))ds||”
t, iN-
+ l—-B(v RN -V VRE)]. (3.30)
N
It is in this estimate that ¢ € w1 ** is needed essentially.

By (3.10) the coefficient vectors vN £ (t) satisfy

vM%u-[ﬁw”%o+[&Hﬂtzﬂahwﬂ)+—ﬂwﬁw&)vﬁani (3.31)

(t) - VI;’E(t)) for i=1,...,N.

which implies that \r};’e(t) = g(v';:i

Therefore

vae O, ey ¢ LBLEIE ey o ¢

The fourth term IV in (3.30) is estimated separately now.

I8l sl Ve |

A short calculation

shows

Bl r
|, « SHBIE kg < 3k

And for i=2,...,N we get

i"l 'N!t'S)
T

%

vl = 1%
) y= J'N'kN"'l

G-nr

T

" N l(riss-_sz>e

Whe(5)ds| =
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T
[}
-]
.
-4
[ IS
-

t
[ = + [ @0 + 266,810 <o)l ")
u=jN-w+1 ’ tO

3 |IB|| rkNI(S
s & K

| Using these last estimates in (3. 30) we arrive at
. _ . t
c— ||VNs€(t)" ® §:Z(1-||B"—}.1[6K5 + |o], + [q)nz(s)(1+|u(s)|P/2)(K5+1)ds +

+ (Kg+1) ny(t) (1+|u(t)|p/2)],

so that (3.24) is established. The proof of (3.23), similar to the one

for (3.24), is contained in [15] and will therefore not be given here.

Lemma 3.3. Under the hypotheses of Theorem 3.2 and the additional

condition that E§ g_llzugu , there exist constants M; depend-

¢,£,B,T and U but independent of $,N,e,t such that

ing on
vhoece) - Voo < Jhlom, Eam, 2 (3.32)
0 1 lolo My g+ M —
lwhee) - wieed) | < 161, My &+ m, -/% (3.33)
Neteece) - Wl T < ddl, +amgte + -',;1.14 Mg gy - (3.39)




Proof. From (3.11), (3.24), (3.27) and (H3) it follows that

: Ne-ty)
e - Nl < e T ey, - @lopl ¢
t -N(t-s)
Al e T e iEuen « Lol e - e <

t, Nk J
! ¢ -N(t-s)
' < 1o00) - ot + L e T ny(s)+u) P AV T ¢ s

C— -0
.N N(ts!
t
f + 1L 8g e V1S (s)ds| <
u=iN-kNe1 "t
. t 1/2
< 18l + (Rg+lin, (t) (§+ (ILJN)”Z(L lu(s)|Pds) )+
0
st 1/2
» LIl R [091 ke E + g G 2([ e (Pas) ].
0

By (3.29) and since Iy <1 it follows that -”-‘iuagl—‘N- < 2, which
can be used in the last estimate to imply (3.32). The proof of
(3.33) is quite similar. Employing (3.26) the second estimate

in (3.29) and (3.31) the verification of (3.34) is somewhat tedious,

but simple,and will not be given here, see [16]. Estimates (3.32)-
(3.34) imply (3.34) with ||-|| ®' replaced by |l-||°; we were

not able to prove (3.34) directly.
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Application to Optimal Control Problems and Examples

In this.section the theory that has been developed in the
previous section will be applied to optimal control problems
associated with (NFDE}.

We restrict ourselves to a simple class of problems and re-
fer to [1], [16] for a more elaborate discussion on the type of
problems, specifically Cost functionals, that can be treated within

the same framework. The aim of this section is to demonstrate

averaging approximation scheme for actual computations and to report

on some examples,

The equation under consideration is (2.1) and (2.2) again

and in view of Remark 3.3 we assume that R" is endowed with a

2
norm such that § ||B;l] < 1. The controls will be taken from
i=1

a closed and convex subset U of Lp(to,TdRm). Below we shall

éontinue to give the details for the {Z?,PT,A?} scheme and we

only mention that in continuation of Remark 3.4 and Proposition 3.1

one may derive similar results for the averaging approximation scheme.
We define a functional J: R™ % C x C(t,,TR™) * LP(t;,T;R")>R

by
01:)’2))3”4) = (yl'C(O)) G(yl' (0)) y ]_ (yz(s)'*:(s)) lf()’z( )'E(S))ds y

T
+ [totysts)*oys(s) b y4(5) Ry, ()]s (8.1)

where § € C is fixed and G,H,Q and R are semi-definite,

symmetric matrices of appropriate dimensions. R moreover is
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m
positive definite. The cost functional ¢: Lp(tO,TﬂR ) »* R

is given by

¢ (u) = J(x(T30,u), xq(-350,u), x(+35¢,u),u)

where x(-;¢,u) 1is a solution of (2.1). Now an optimal control

problem can be formulated:

(P) Minimize ¢ (u) over U.

Analogously we define a sequence of approximating optimal control

problems:

(PN) Minimize ¢N(u) over U, where

Ny = NENeme,w 0y, Mo ,w, 2Nee,w 0),w),

A ey —amm

with zN(-;¢,u) solution of (3.12) and with

JN: R x ¢ x C(ty, TR™ * LP(ty,TR™) » R,

given by

T
' [t [y5(5)"Qr5(5) + y4(s)Ry,(s)]ds. 4.2)
0 .

0
M@y Ygyy) = 06@) 60,6 0) + [ ROR @) (51 *HO, () - (P)e)(5))ds




Note that (PN) is a finite dimensional problem in the sense that

it is equivalent to an ordinary differential equation optimal
control problem for the coefficients wN(t) of zN(t). We shall
not discuss the existence problem of solutions of (PN) but rather

refer to [e.g. [17], Chapters 4 and 5] and assume that (PN) has

.a solution ﬁN; if f is of the form

Vv
f(t,9,u) = ZoAicp(-ri) + Eu (4.3)

1

with Ai € &4hn’

exists [16] and since u =+ ¢N(u) is strictly convex it is the

Ee £  and 0=r1,< ... <r, =7, then N
’

unique solution of (PN).

Theorem 4.1. [If (H1)-(H4) hold, if the norm on R™ is chosen such

L
that } IIBiII < 1 for the subordinate matrix norms and if
i=1
{ﬁNk} is a sequence of optimal controls of (PN)'in the convex and

closed subset U of LZ(tO,TﬂRm), then there exists a subsequence
N
{u X} of @V which converges weakly to an optimal control

u €U of (P).

Proof. For the ease of the reader we shall include the proof; the
arguments are quite standard, however, First, note that {GN} is
. 2 .
bounded in L (tO,TﬂRm). For if not, then there exists a sub-
_Ny N . Ny N, N,
sequence u of u” with |u | + » and therefore ¢ (u M

N
s ¢ Q(V) +¢(v) <o for any Ve Lz(to,TﬂRm), which cannot hold

for the specific J that was chosen. {EN} being bounded implies

that it is weakly compact. Therefore, there exists a subsequence




N
{u } of {u}, which converges weakly to some u in LZ(tO,TdRm).

U is assumed to be convex and closed, which implies that it is also

weakly closed and therefore u € U. By the triangle inequality we
find for t € [to,T]

Mo X

(ts¢,u )| < |x C30,u) - x (59,

3K - Kepi0.g K

(t;d,u | .

Cx Gsou) -z
(4.4)
+ |x (-59,u

By Lemma 2.3, the first term on the right hand side of (4.4) converges

to 0 as K > =, Convergence to zero for the second term is a

consequence of Theorem 3.2. In the following estimate we use

N
u ks u, the special form of J and (4.4) to find

o@ = J(x(T;9,u), x:(+3¢,0), x(+;9,u),u) =

M ereg o K Merg 2Ky Nk p 2Ky 0y ok

= 1lim J(z “(T;9,u )(0), z “(T;¢,u ), z ~(~;¢,u (), u™) =
koo

M T N

_imhy (T¢u k)0, z X13;0,8 9, z X(¢-30,0 90, T =
= lim ¢Nk(uNk) < 1im ¢Nk(u) = ¢ (u),

koo

for any u € U. Therefore, u is indeed a solution of (P); moreover, if we

put u = u in the above inequalities then it follows that
N N

1im ¢ X(u Ky = ¢ (u*).

K+

It was pointed out in [16, Remark 4.2] that for f of the
N

form (4.4) the stronger result limu = u in Lz(tO,TdRm) holds.
N
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We have applied Theorem 4.1 to a number of examples of the type

f 3 - -
minimize

T
F) = dxm*exmi + §

[x(t)*Qx(t) + u(t)*Ru(t)ldt
t
2 oM 0
over L (tO,TJR )
(P*) j where G,Q,R are matrices of appropriate dimensions with

GEO,QEO’R>0’

. _— . .. |- subject to. .. . _ . , .

| K(©) - BR(t-1) = ft,x,) + Eu(t),

here f: R x C ->]Rn is assumed to be continuously Fréchet differentiable
in the second variable for each fixed t, t - %(t,wt) is Borel
measurable for each ¢ € C(to-r,TﬂRn) and further, given any compact
convex set X ¢ R"™ there exists m € Ll(tO,TﬂRl) such that

| £(t,0,d£(t,x)¥] <m(t) and |af(e,0,) (1) <m(t) for each © €C(tyT,TH);

here df(t,x)w denotes the Frechet derivative of f w.r.t. the second

variable evaluated at .

In some cases we can calculate analytical solutions to (P*)

using the maximum principle for NFDE. Since the latter is not readily
available in the literature, we include its statement in a form
modified to suit (P*) in Proposition 4.1. This is a special case

of a very general maximum principle for NFDE that was developed in

{14, specifically Lemma 3.3 and Theorem 4.2]; see also [S5].

Proposition 4.1. Let u* be the optimal control for (P*). Then

there exists a scalar “0 < 0 and a function V¢ € Lz(to,T+rﬂR“) ;

such that




) R
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(i) v(t) =0 on (T,T+71)
(ii) ¥ (T) = a,Gx(T) and
® ] T * T
¥(t) = o4x(T)°G + V(r+s) B - I ¥(s) ' n(s,t-s)ds+ O'OLX(S)*st
t

A 0
where df(t,xt(ﬁ)) = f dsn(t,s)y(s) for y € C, and
- r .

. T *o— 1 — x —
(iii) [ [(Y(t)) Eu(t) + 3 O‘Ou(t) Ru(t)]dt =
to
- IT * 1 *
o = o max o [V(t) "Ev(t) + i Gov(t) Rv(t)]dt.
v€Lp(t0,T;]R )t S -

If f is moreover linear in the second variable then (i)-(iii)
in Proposition 4.1 guarantee the existence of a solution u of
(P*), [14, Theorem 5.1, Remark 5.1) and (iii) can be replaced by

the pointwise maximum principle. For

E(t,0) = Ap0(0) + Ajo(-T)

: b oo maaile
it k]
A uT- Sl

for example, we get the following necessary and sufficient conditions

e it

characterizing u, (without loss of generality, we let @y = -1):

(i)' ¥(t) =0 . on (T,T4r]

T
(ii)' w(t) = -x(T)*G + v(r+s)™s + ] w(s)*Aods +
t

+

T T .
f w(s)*Alds -I x(s)*Qds
t+r t

| (i11)' y(£)*EA(t) - 7 T(e)*Ru(e)* = max_ ¥ (t)"Ev - 2 ViR
veRrM

.{ for almost every t € [t,,T].
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From (iii)' it follows that u(t) = R'IE*W(t) and we see
that even in this very simple case ¥, the solution of (ii)' and
therefore u will not be continuous, in general, but will have
~ jumps at all multiples values of r.

We shall now briefly report on some of the numerical examples

‘that were carried out.

Example 1. This is the optimization problem of minimizing

1

2
Ju) = Lyx®(s) + 7 fouz(s)ds

[N TN

over L°(0,2;R), subject to

x(t) -}Tx(t-u + x(t-1) + u(t) for t € [0,2]

x(t) o for t € [-1,0].

We used the maximum principle in the form (i)'-(iii)' to calculate

the exact solution. The optimal trajectory x and optimal control

ex

u,, were found to be

t2 9
ot + 6 -7t +1 for te€ [0,1]
xex(t) = )
a-opt + E @3« Selh? s S ey 3 - U5 for te,2)
and
§(t - %) for t € (0,1]
uex(t) =

-8 for t € (1,2]

B T uPp R -
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(2+72)Y

where ) 1+—-T9-9 .
Y 33

For this and all the other examples reported on in this section,
we used the averaging scheme to approximate the infinite dimensional
problem. The resulting finite dimensional optimum control problem
was solved via a combined gradient-conjugate gradient iterative
technique and numerical integration was carried out by a modified
Runge-Kutta method (Gill's modification).

For this example, we did calculations for various values of a

and Y. In Tables 1-3 the results for o 1 and Y =1 are
presented. As should be expected one can recognize convergence of
optimal state, payoff and control to the exact solutions. However,
it seems quite difficult from this and the other examples that we
studied on the computer to predict a possible rate-of-convergence
result. Certainly, the convergence will be slower than linear, in
general. On the other hand; in many examples we experienced

: surprisingly good approximation results for low values of N. As
J ! should be expected, due to the jumps in the optimal control at

i f multiples of 1, the relative error of Uay - uN has a peak at

t = 1. One can convince oneself quickly that the fact that it

actually increases in this example is no reason for precariousness.
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o R T T TR TR

TABLE 1
Xox (t) xex-)c‘ xex-x8 xex-x16 xex-x32 xex-xt.;‘f xex-x128
1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.8629 0.0118 0.0096 0.0078 0.0058 0.0040 0.0007
0.7713 0.0136 0.0077 0.0055 0.0039 0.0026 0.0017
0.7252 0.0214 0.0078 0.0023 0.0009 0.0003 0.0007
1.0 0.7247 0.0484 0.0261 0.0136 0.0070 0.0035 0.0018
1.25 0.7401 0.0734 0.0445 0.0262 0.0149 0.0082 0.0045
1.5 0.7384 0.0701 0.0384 0.0205 0.0112 0.0063 0.0000
1.75 0.7308 6.6567A “‘6.0578 0.0136 0.0071 0.0040 0.0024
2.0 0.7287 0.0506 0.0257 0.0133 0.0070 0.0038 0.0021
TABLE 11
Yex (t) uex'u4 uex'us uex'u16 uex"":()2 uex'u‘54
0.0 -1.6397 0.0863 0.0748 | 0.0641 0.0539 0.0454
0.25 | -1.4575 0.0125 0.0078 0.0048 0.0008 -0.0023
0.5 -1.2753 | -0.0237 | -0.0250 | -0.0195 -0.0119 -0.0067
0.75 | -1.0931 | -0.0268 | -0.0318 | -0,0291 -0.0199 -0.0098
1.0 -0.9109 0.0015 | -0.0130 | -0.0291 -0.0440 -0.0563
1.25 | -0.7287 0.0644 0.0469 0.0256 0.0082 -0.0006
1.5 -0.7287 | -0,0136 | -0.0138 | -0.0115 -0.0070 -0.0038
1.75{ -0.7287 | -0.0466 | -0.0255 | -0.0133 -0.0070 -0.0038
2.0 -0f7287 -0.0506 { -0.0257 | -0.0133 -0.0070 -0.0038
=
TABLE III
exact | J -3 | 3 8| 3 - g 0| g %
J 1.3664 0.0186 0.0081 0.0039 0.0021 0.0012




we try to minimize

2
Y x2(2) + % I o ul(s)ds
0

o) =

J(u) =

over u € LZ(O,ZﬂR), subject to

x(t) - %.X(t-l) + 2x(t) + 4u(t)

a "

i
i

= )

-
' 2

6 Se4

T 16 "16°

2t,, -1.2t-2, 2 1 -1...2
xex(t)=jae +4p Lse (e“ - e +T-3—)+4r 8(e

+ 69-1[84-2t(¥ -t - eZ) + ezt(ez - !.ZJL)]
L
!
‘;
and
4o lee2(1 )3 . % - t)  for
u (t) =
ex ) )

-4p 16e4 2t for
] where & = “(34'32)(Y-1'P-1(°4e8 + 10e8 %; e

Example 2. This is another linear optimization problem, in which

Again we used the maximum principle to calculate the exact solutions:

e2
] for t € [0,1]

52t ag2t-2

ye" (t-1) -

for t € [1,2]

t € (0,1}

t € (1,2],
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The exact and the numerical values for the values A = 4, p = 3

and Y = 1 can be found in Tables 4-6 below.

The numerical solution of the optimal control problem requires
4 an initial guess for the optimal control. In order to be able to
compare between various examples we always take as an initial guess
uOEO.
. N
solution u

In actual computatidéns it will be advisable to use the

of the Nth approximative step as start-up value in

- — ‘the next step. The approximation in Example 2, for instance, -is not
as good as in Example 1 where the exact optimal control is closer

from t = 0 on.

to 0 This can be seen when comparing the

relative errors |¢ex-¢N|/|¢ex|.

TABLE IV

!% t xex(t) xex-x4 xex-x8 xex-x16 xex-x32 xex-x64
}. 0.0 | 4.0000 | 0,0000 | 0.0000 | 0.0000 { 0.0000 | 0.0000
% 0.25 2.3730 0.0247 0.0166 0.0101 0.0063 0.0040

%é 0.5 1.2449 0.0149 0.0313 0.0219 0.0105 0.0043
0.75 0.3698 |-0.1569 |-0.0642 |-0.0139 0.0049 0.0058

1.0 -0.4503 |-0.5966 |-0.4510 |-0,3358 -0.2492 -0.1836

! 1.25 | -0.3738 |-0.3618 |-0.2246 |-0.1176 -0.0544 -0.0267

| 1.5 -0.3019 |-0.2629 |-0.1737 |-0.1095 -0.0725 -0.0503

1.75 | -0.1851 |-0.1877 |-0.0514 |-0.1287 -0.1097 -0.0974

2.0 0.0686 |-0.0116 [-0.0058 |-0.0029 -0.0014 -0.0007

P ——
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1

2
J(u) = xZ(Z) +t 3 fouz(s)ds

over u € LZ(O,ZﬂR)

x(t)
x(t)

subject to

TABLE V
4 8 16 3 64
xex(t) Uy U Uy U Uy U U, U 2 Ugy U uex-u128
0.0 -3.9803 0.0119 0.0120 0.0122 0.0123 0.0122 0.0120
0.25 | -2.5167 0.0320 0.0145 0.0049 -0.0001 -0.0024 -0.0030
_0.5 -1.5886 0.0398 0.0183 0.0067 0.0013 -0.0004 -0.0009
0.75 | -1.0012 0.0412 0.0222 0.0123 0.0063 0.0024 0.0004
1.0 | -0.6302 | 0.0393 | 0.0250 0.0189 0.0168 0.0167 0.0175
1.25 | -0.4099 0.0216 0.0106 0.0059 0.0043 0.0031 0.0018
1.5 -0.2486 0.0289 0.0175 0.0099 0.0051 0.0024 0.0011
1.75 { -0.1508 0.0242 0.0127 0.0063 0.0031 0.0015 0.0007
2.0 -0.0915 0.0154 0.0007 0.0038 0.0018 0.0008 0.0004
TABLE VI
4 8 16 32 _ 164 128
////// exact Jox™J JoxJ Jex-J Jex-J Jex J Jox™J
J 6.4798 |-0.1895 [-0,0935 |-0.0431 -0.0177 ~0.0054 0.0002
Example 3. This finally is the nonlinear example of minimizing

= sin x(t) + x(t-1) - %—J‘c(t-l) + u(t) for t € [0,2]

4

for

t € {-1,0].
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The numerical results of this example which are given in

Tables 7-9 seem to support what could be seen in the linear ex-

;' amples already: the approximation is quite well for low values
g of N, and increasing N does not improve the accuracy very
quickly,
i
} el el e o e
E TABLE VII
¢ x4-x8 ~x8-x16 x16-x32 x32_x64 x64_x128 <128 ;
0.0 0.0000 0.0000 0.0000 0.0000 0.0000 4.0000
0.25 0.0213 0.0242 0.0167 0.0089 0.0038 3.8395
0.50 0.0266 0.0334 0.0271 0.0151 0.,0066 3.7760
0.75 0.0037 0.0128 0.0160 0.0149 0.0109 3.8424

.00 | -0.0378 | -0.0318 | -0.0252 | -0.0197 -0,0153 4,0646

[

.25 | -0.0609 | -0,0476 | -0.0312 |} ~0.0166 -0.0078 4.1047

.50 | -0,0435 | -0,0244 | -0.0143 | -0.0090 -0.0053 3.9466

,..........
=] =]

.75 -0.0158 | -0,0048 0.0008 | -0.0009 -0.0020 3.6203

2.00 | -0.0057 0.0036 0.0068 0.0063 0.0046 3.1176

—— =




Bt

L R e

o d -
et i

o

TABLE VIII

A8 | Bautt | u16.,32] 3264 | 64128] 128
0.0977 | 0.0917 | 0.0650 | 0.0498 | 0.0426 | -4.0700
0.25 | 0.0772 { 0.0982 | 0.0725 | 0.0285 | 0.0049 | -3.8079
0.50 | -0.0121 [ 0.0103 | 0.0353 | 0.0412 | 0.0255 | -3.4425
0.75 | -0.1329 | -0.1392 | -0.1130 | -0.0610 | -0.0057 | -2.7341
- —1.00-] -6.1706 | -0.1598 | ~-0.1369 | -0.1119 | -0.0881 | -2.4752
1.25 | -0.0568 | 0.0135 | 0.0615 | 0.0565 | 0.0194 | -3.4442
1.50 | 0.0598 | 0.0407 | 0.0044 | -0.0049 | -0.0037 | -4.0264
1.75 | 0.0315 | -0.0041 | -0.0117 | -0.0106 | -0.0075 | -4.9039
2.00 | 0.0118 | -0.0067 | -0.0137 | -0.0126 | -0.0093 | -6.2344
TABLE IX

S| A8 | Bgte | g6 gsz| 3264 | g64 5128|128
J 0.0348 | 0.0541 | 0.0545 | 0.0428 | 0.0302 | 24.4971

Remark 4.1.

A series of examples of linear and nonlinear unstable

(see Remark 3.3) NFDE was also tested on the computer.

numerical results strongly indicate that the linear schemes pre-

sented in this paper do converge without assuming (HS).'Unlike in
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Examples 1-3, however, for low values of N the numerical
solutions are worthleés, their relative error being greater than

1l sometimes. Increasing N to 256 and higher, however, resulted
in a surprising increase of the observed accuracy of the approxi-
.mation. Although from a practical point of view the case of
unstable neutral delay equations is not as important as the stable

one, it should be a challenging question to study the piecewise

" linear schemes presented without assuming (HS5). Let us recall

that for linear NFDE and cubic (or higher-) order spline schemes
(H5) could be avoided by working in state spaces endowed with a

special norm depending on the equation, [9,11}.
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